Use Spark’s JDBC connector to read, process, and write PostgreSQL data at scale.
Integration lets you pull large PostgreSQL tables into Spark DataFrames, run distributed transformations, and push aggregated results back—without ETL pipelines.
Spark distributes computation across a cluster, so joins, window functions, and ML workloads finish in minutes instead of hours on a single Postgres server.
Use spark.read.format("jdbc") with the JDBC URL, driver, dbtable, user, and password options. Partition columns and predicates speed parallel reads.
// Scala or PySpark
val df = spark.read
.format("jdbc")
.option("url", "jdbc:postgresql://db:5432/shop")
.option("dbtable", "public.Orders")
.option("user", "analytics")
.option("password", sys.env("PG_PW"))
.option("partitionColumn", "id")
.option("lowerBound", 1)
.option("upperBound", 100000)
.option("numPartitions", 8)
.load()
Read Customers, Orders, and OrderItems separately, then use DataFrame joins. Broadcast small tables like Products to reduce shuffle.
val joined = orders.join(customers, "customer_id")
.join(products, "product_id")
Call DataFrame.write.format("jdbc") with mode("overwrite" | "append"). Batch size and isolation level control throughput and safety.
agg.write
.format("jdbc")
.option("url", "jdbc:postgresql://db:5432/shop")
.option("dbtable", "public.daily_sales")
.option("user", "analytics")
.option("password", sys.env("PG_PW"))
.option("batchsize", 10000)
.mode("append")
.save()
Match numPartitions to cluster cores, push down predicates with filter clauses, and configure fetchsize (e.g., 10 000) to reduce round-trips.
Store secrets in environment variables or tools like HashiCorp Vault. Avoid hard-coding passwords in notebooks or git repos.
Using a non-indexed partition column stalls reads—index id or date columns. Forgetting to set jdbcTimezone can shift timestamps; always align to UTC.
Yes. Provide a sub-query in dbtable or call .option("pushDownPredicate", true) in Spark 3.4+ to let JDBC execute WHERE clauses in Postgres.
Start with 1–2× the total executor cores. Increase until network or database CPU becomes the bottleneck.
Absolutely. Append ?sslmode=require to the JDBC URL or set the sslmode option to encrypt traffic between Spark and PostgreSQL.